本文目录一览

1,请问怎么开飞机

楼上三个全是不懂装懂的,再新式的飞机脚舵也存在,又什么指挥驾驶员的,不懂就别说了,在大型客机上若是执行短程任务,则由正驾驶或副驾驶一人担负驾驶任务,另一人主要负责与地面空管人员的联系。若是长程任务则要轮班驾驶。 在大型客机上正副机师的仪表有相同的部分,例如空速表,两人要互相校正;也有不同的部分,例如客舱加压,起落架等就在靠近副座的地方,这些主要由各自负责。 大型客机驾驶严格遵守双人配合,相互监督的原则,尤其是副机师往往要求要有较好的方向感与水平感,可以立刻纠正正机师的不当操作。在一些重大操作执行之前要互相讨论确认,执行时要有一人宣读操作手册上的流程,一人执行,例如起飞检查之类。 一但飞机发生突发情况,一人驾驶,一人要与地面保持联系,查阅手册排除故障,后者的工作在类似波音767,757之类双人班组(减少一名飞行工程师)的时候一般落在副机师身上。 在飞机突然丧失动力或电力的时候,操作飞机便要完全用人的力量来操作,这时正副机师同时操纵方向杆可以分担重负,便于操作。 总之,正副机师的区分已经变得不是很明显,区别的只是谁在驾驶,谁在保障通讯与技术而已。 PS:波音767的官方操作手册有600页之多,简单的阐述几句怎么开是讲不明白的,另传个738的座舱图。
两个人的,有一个是驾驶,一个指挥。一个人的就比较先进,是电脑控制的…
不要想那么多,现在的新式飞机已经没有那么多的仪表了,取而代之的是一个显示屏,用心再加上手就可以了,脚都用不上

请问怎么开飞机

2,飞机怎么开的

固定翼的图没有找到,不过可以介绍给您文字资料 飞行员操纵驾驶盘(驾驶杆)、脚蹬板.使升降舵、副翼和方向舵偏转,能使飞机向各个方向飞行。舵柄。也就是飞机的方向盘。应该在你的前面,可用来控制飞机转弯和俯仰:往后拉可使机头抬起,往前推可使机头低下。往左扳可使飞机左转,往右扳可使飞机右转;飞机的舵柄非常敏感,在飞行中,不管是朝哪个方向扳动,每次只要扳动一两寸就足够了。在巡航状态下,机头应向下探7厘米多一点。 高度表。这是飞机上最重要的仪表(至少在起飞时是很重要的)。高度表的表盘通常为红色,位于控制台中间。高度表用以指示飞机所在高度。 航向表。实际是一个罗盘。其特征是表盘里有一只小飞机,别的仪表里都没有。小飞机的机头所指的方向就是你目前的航向。 空速表。在控制台左上方。通常以节(海里/小时)为刻度单位。小型飞机的巡航速度约为120节。空速低于70节时,飞机将有失速的危险。 油门。用来控制飞机的空速、机头的姿势、机头姿势与地平线之间的关系等等。位于两个座位之间,黑色。朝自己的方向拉可以减速及下降,朝反方向推可以加速及上升,加减油门会导致发动机噪音的改变。油量表。位于控制台下方。飞机上的储备油量一般比抵达目的地所需的油量要多一些。 翼瓣控制。翼瓣控制比较复杂,会增加驾驶的难度。应尽量用油门,而不是翼瓣来控制飞机的航速。 ·开始下降。 往里拉油门,使飞机减速,把速度降到巡航速度的3/4左右。随着速度的降低,机头会有所下探。飞机降落时,机头应当比水平面低10厘米左右。·扳动起帮朴.、 例如后拉驾驶盘.升降舵上偏,机头上仰;前推驾驶盘,则升降舵下偏,机头下俯。向左压驾驶盘.左边副翼上偏,右边副翼下偏,飞机向左滚转;反之,向右压驾驶盘.右副翼上偏,左副翼下偏,飞机向右滚转。向前左蹬脚蹬扳(即蹬左舵),方向舵左偏,机头向左馅偏转;反之,向前蹬右脚蹬板(即蹬右舵),方向舵右偏,机头向右偏转。在此介绍一下小型客机与小型喷气机的操作及着陆方法。 检查飞机是否有固定的或可伸缩的起落杆。固定式的起落杆总是处于放下状态,不需要任何操作。如果飞机用的是可伸缩式的起落杆,在两座之间、油门操纵杆旁边就应该还有一个把手呈轮胎状的控制杆。在水面上降落时,起落架可以不放下。 发个直升机驾驶图片给你
38岁打飞机正常吗..
WASD

飞机怎么开的

3,为什么飞机飞过的时候很响

声爆(或音爆)是在空气中运动的物体速度突破音速时产生冲击波所引起的巨大响声。通常声爆是由超音速战斗机或其他超音速飞行器,如协和飞机,跨音速飞行时造成的。飞机在以较低速度飞行时产生的声音是向各个方向传播的。由于飞机的运动,飞机头部发出的声波受到挤压,而飞机尾部发出的声波则被扩散。当飞机靠近时,声音比较尖锐;而当飞机离开时,声音比较低沉。当飞机以音速飞行时,飞行的速度比它发出的声波更快。观察快速行驶的汽艇可以发现,汽艇的速度比它形成的水波快,以致于水波不是在汽艇的周围以圆圈形式传播,而是排成三角形,三角形的顶尖正好与汽艇的头部相重合。对于音速飞行的飞机,由于声波是向各个方向传播的,形成的就不是三角形,而是圆锥形,锥体的顶尖位于机身上。在这个锥体中,飞机的声波被压缩成单个脉冲,这个锥体被飞机“拖着”,并向四周扩散,直至飞机过去后,声音才到达我们的耳朵,于是我们突然感到一个冲力,这就是声爆现象。如果飞机在天上,人在地表,30000ft巡航时,地表听不见声音,除非有垂直向下的强风. 事实上国际航协给定的标准5000ft巡航高度,地表噪音60分贝,高于这个噪音的一律不予发放适航证,不能上天(民航客机).正常的巡航高度B737(18000-24000ft),B747(22000-32000ft)。ft为英尺。起降时因为超音速飞机用的是喷气涡轮发动机,功率输出为发动机喷射的燃料燃烧后的废气,噪音极大,俗话说二踢脚上天,火箭原理,就相战斗机一样. 普通民航客机为喷气涡扇或者涡桨,起降时发动机的功率输出为扇叶或者螺旋桨对空气的搅动,俗话说风扇扇风竹蜻蜓原理,声音小. 高空高速巡航时空气稀薄,涡扇扇叶对空气搅动的功率极小,80%的输出都是喷气. 如果你指音爆,那个能量几乎不能用分贝来衡量,如果飞机以超音速通场,那么机场的玻璃会碎,弹药库会被引爆,机场完全损毁瘫痪. 如果飞机在10000FT的高度那么地面上听到的音爆仅仅就是两声“怦怦”而已,声音强度比打雷小多了。 另外飞机上的人是听不到音爆的,就像台风的风眼风平浪静一样的。前激波与后激波中间的等势体。
当飞机以音速飞行时,飞行的速度比它发出的声波更快。观察快速行驶的汽艇可以发现,汽艇的速度比它形成的水波快,以致于水波不是在汽艇的周围以圆圈形式传播,而是排成三角形,三角形的顶尖正好与汽艇的头部相重合。对于音速飞行的飞机,由于声波是向各个方向传播的,形成的就不是三角形,而是圆锥形,锥体的顶尖位于机身上。在这个锥体中,飞机的声波被压缩成单个脉冲,这个锥体被飞机“拖着”,并向四周扩散,直至飞机过去后,声音才到达我们的耳朵,于是我们突然感到一个冲力,这就是声爆现象。如果飞机在天上,人在地表,30000ft巡航时,地表听不见声音,除非有垂直向下的强风. 事实上国际航协给定的标准5000ft巡航高度,地表噪音60分贝,高于这个噪音的一律不予发放适航证,不能上天(民航客机).正常的巡航高度B737(18000-24000ft),B747(22000-32000ft)。ft为英尺。起降时因为超音速飞机用的是喷气涡轮发动机,功率输出为发动机喷射的燃料燃烧后的废气,噪音极大,俗话说二踢脚上天,火箭原理,就相战斗机一样. 普通民航客机为喷气涡扇或者涡桨,起降时发动机的功率输出为扇叶或者螺旋桨对空气的搅动,俗话说风扇扇风竹蜻蜓原理,声音小.
如果你就在飞机旁边,就算不是超音速的飞机飞过,你恐怕也会因脾脏爆裂而亡. 如果飞机在天上,人在地表,30000ft巡航时,地表听不见声音,除非有垂直向下的强风. 事实上国际航协给定的标准5000ft巡航高度,地表噪音60分贝,高于这个噪音的一律不予发放适航证,不能上天(民航客机).正常的巡航高度B737(18000-24000ft),B747(22000-32000ft)。ft为英尺。起降时因为超音速飞机用的是喷气涡轮发动机,功率输出为发动机喷射的燃料燃烧后的废气,噪音极大,俗话说二踢脚上天,火箭原理,就相战斗机一样. 普通民航客机为喷气涡扇或者涡桨,起降时发动机的功率输出为扇叶或者螺旋桨对空气的搅动,俗话说风扇扇风竹蜻蜓原理,声音小. 高空高速巡航时空气稀薄,涡扇扇叶对空气搅动的功率极小,80%的输出都是喷气. 如果你指音爆,那个能量几乎不能用分贝来衡量,如果飞机以超音速通场,那么机场的玻璃会碎,弹药库会被引爆,机场完全损毁瘫痪. 如果飞机在10000FT的高度那么地面上听到的音爆仅仅就是两声“怦怦”而已,声音强度比打雷小多了。 另外飞机上的人是听不到音爆的,就像台风的风眼风平浪静一样的。前激波与后激波中间的等势体。
这是因为飞机的飞行速度很快,它跟空气的摩擦很剧烈,从而产生振动,发出了巨响。
不说了,看看音爆的图片
首先,我理解你说的空震是物理学上的声爆现象。声爆(或音爆)是在空气中运动的物体速度突破音速时产生冲击波所引起的巨大响声。通常声爆是由超音速战斗机或其他超音速飞行器,如协和飞机,跨音速飞行时造成的。飞机在以较低速度飞行时产生的声音是向各个方向传播的。由于飞机的运动,飞机头部发出的声波受到挤压,而飞机尾部发出的声波则被扩散。当飞机靠近时,声音比较尖锐;而当飞机离开时,声音比较低沉。当飞机以音速飞行时,飞行的速度比它发出的声波更快。观察快速行驶的汽艇可以发现,汽艇的速度比它形成的水波快,以致于水波不是在汽艇的周围以圆圈形式传播,而是排成三角形,三角形的顶尖正好与汽艇的头部相重合。对于音速飞行的飞机,由于声波是向各个方向传播的,形成的就不是三角形,而是圆锥形,锥体的顶尖位于机身上。在这个锥体中,飞机的声波被压缩成单个脉冲,这个锥体被飞机“拖着”,并向四周扩散,直至飞机过去后,声音才到达我们的耳朵,于是我们突然感到一个冲力,这就是声爆现象。当飞机以超越音速飞行时,声波则只是在飞机尾部之后形成,并且不再产生声爆现象。声音传播速度大约为314m/s,所以300m/s不会发生声震。飞机驾驶舱在电影很多地方应该可以看到。民航飞机飞行速度受飞行高度,风速,等很多因素影响,不同机型速度也不一样,一般主力民航飞机737,800,700,和空客320,321等一般巡航地速在700km/h——1000km/h之间。

为什么飞机飞过的时候很响

4,飞机是怎么跑的呢 又是怎么飞的呢

飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理 流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。 连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。 伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。 飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。 机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。
二. 起飞 飞机从开始滑跑到离开地面,并升到一定高度的运动过程,叫做起飞。 飞机起飞的操纵原理 飞机从地面滑跑到离地升空,是由于升力不断增大,直到大于飞机重力的结果。而 只有当飞机速度增大到一定时,才可能产生足以支持飞机重力的升力。可见飞机的起飞 是一个速度不断增加的加速过程。 ; 剩余拉力较小的活塞式螺旋桨飞机的起飞过程,一般可分为起飞滑跑、离地、小 角度上升(或一段平飞)、上升四个阶段。 对有足够剩余拉力的螺旋桨飞机,或有足够剩余推力的喷气式飞机,因可使飞机加 速并上升,故起飞一般只分三个阶段,即起滑跑、离地和上升。 (一)起飞滑跑的目的是为了增大飞机的速度,直到获得离地速度。拉力或推力愈大,剩余拉力或剩余推力也愈大,飞机增速就愈快。起飞中,为尽快地增速,应把油门推到最大位置。 1.抬前轮或抬尾轮 前三点飞机为什么要抬前轮? 前三点飞机的停机角比较小,如果在整个起飞滑跑阶段都保持三点姿态滑跑,则迎角和升力系数较小,必然要将速度增大到很大才能产生足够的升力使飞机离地,这样,滑咆距离势必很长。因此,为了减小离地速度,缩短滑跑距离,当速度增大到一定程度时就需要抬起前轮作两点姿态滑跑,以增大迎角和升力系数。 抬前轮的时机和高度 抬前轮的时机不宜过早或过晚。抬前轮过早,速度还小,升力和阻力都小,形成的 上仰力矩也小。要拾起前轮,必须使水平尾翼产生较大的上仰力矩,但在小速度情况 下,水平尾翼产生的附加空气动力也小,要产主足够的上仰力矩就需要多拉杆。结果, 随着滑跑速度增大,上仰力矩又将迅速增大,飞行员要保持抬前伦的平衡状态,势必又 要用较大的操纵量进行往复修正,给操纵带来困难。同时,抬前轮过旱,使飞机阻力增 大而增长起飞距离。如果抬前轮过晚,不仅使滑跑距离增长,而且还由于拉杆抬前轮到离地的时间很 短,飞行员不易修正前轮抬起的高度而保持适当的离地迎角。甚至容易使升力突增很多 而造成飞机猛然离地。各型飞机抬前轮的速度均有其具体规定。 前轮抬起高度应正好保持飞机离地所需的迎角,前轮抬起过低,势必使迎角和升力系数过小,离地速度增大,滑跑距离增长,前轮抬起过高,滑跑距离虽可缩短,但因飞机阻力大,起飞距离将增长,而且迎角和升力系数过大,又势必造成大迎角小速度离地,离地后,飞机的安定住差操纵性也不好。仰角过大,还可能造成机尾擦地。从既要 保证安全又要缩短滑跑距离的要求出发,各型飞机前轮抬起高度都有其具体规定。飞行员可从飞机上的俯仰指示器或从机头与天地线的关系位置来判断前轮抬起的高度是否适当。 后三点飞机为什么要抬尾轮 后三点飞机与前三点飞机相比,停机角比较大,因此三点滑跑中迎角较大,接近其临界迎角,如果整个滑跑阶段都保持三点滑跑,升力系数比较大,飞机在较小的速度下 即能产生足够的升力使飞机离地。此时滑跑距离虽然很短,但大迎角小速度离地后,飞 机安定性操纵性都差,甚至可能失速。因此后三点飞机,当滑跑速度增大到一定时,飞 行员应前推驾驶杆,抬起机尾作两点滑跑,以减小迎角。与前三点飞机抬前轮一样,为了既保证安全,又缩短滑跑距离,必须适时正确地抬 机尾。抬机尾过早或过晚,过高或过低,不仅会增长滑跑距离,起飞距离,而且会危及 飞行安全。各型飞机抬机尾的速度和高度也都有其具体规定。 2. 保持滑跑方向 对螺旋桨飞机而言,起飞滑跑中引起飞机偏转的主要原因是螺旋桨的副作用。 起飞滑跑中,螺旋桨的反作用力矩力图使飞机向螺旋桨旋转的反方向倾斜,造成两 主轮对地面的作用力不等,从而使两主轮的摩擦力不等,两主轮摩擦力之差对重心形成偏转力矩。螺旋桨滑流作用在垂直尾翼上也产主偏转力矩。前三点飞 机抬前轮时和后三点飞机抬尾轮时,螺旋桨的进动作用也会使飞机产生偏转。加减油门和推拉笃驶杆的动作愈粗猛,螺旋桨副作用影响愈大。为减轻螺旋桨副作用的影响,加油门和推拉驾驶杆的动作应柔和适当。滑跑前段,因舵的效用差,一般可用偏转前轮和刹车的方法来保持滑跑方向。滑跑后段应用舵来保持滑跑方向。随着滑跑速度的不断增大,方向舵的效用不断提高,就应当回舵,以保持滑跑方向。 喷气飞机起飞滑跑方向容易保持,其原因是;一是喷气飞机都是前三点飞机, 而前三点飞机在滑跑中具有较好的方向安定住,二是没有螺旋桨副作用的影响,所以在加油门和抬前轮时,飞机不会产主偏转。 (二) 当速度增大到一定,升力稍大于重力,飞机即可离地。离地时作用于飞机的力。此时升力大于重力,拉力或推力 大于阻力。 离地时的操纵动作,前三点飞机和后三点是不同的。前三点飞机是因飞行员拉杆产生上仰操纵力矩,而使飞机作两点滑跑的。随着滑跑速度 的增大、上仰力矩增大,迎角将会增大。虽然飞行员不断向前推杆以保持两点滑跑姿态,但 原来的俯仰力矩平衡总是随速度的增大而不断 被破坏,在到达离地速度时,迎角仍会有自动增大的趋势。所以,前三点飞机一般都是等其自动离地。 后三点飞机则不然,飞机到达离地速度时,一般都需带杆增大迎角而后离地。这是因为后三点飞机在两点滑跑中,飞行员是前推杆,下偏升降舵来保持的,随着速度增大,下俯操纵力矩增大,将使迎角减小,飞行员虽不断带杆以保持两点滑跑,但在到达 离地速度时,迎角仍会有减小的趋势。所以,必须向后带杆增大迎角飞机才能离地。后三点飞机,正确掌握离地时机是很重要的。离地过早或过晚,都将给飞行带来不利。 机轮离地后,机轮摩擦力消失,飞机有上仰趋势,应向前迎杆制止。对螺旋浆飞 机,机轮摩擦力矩也消失,飞机有向螺旋桨旋转方向偏转的趋势,应用舵制止。 (三)一段平飞或小角度上升 对剩余拉力比较小的活塞式螺旋浆飞机,飞机离地还尚未达到所需的上升速度,故 需作一段平飞或小角度上升来积累速度。飞机离地后在12米高度向前迎杆,减小迎 角,使飞机平飞加速或作小角度上升加速。飞机刚离地时,不宜用较大的上升角上升。 上升角过大,这会影响飞机增速,甚至危及安全。 为了减小阻力,便于增速,飞机高地后,一般不低于5米高度收起落架。收起落架 时机不可过早或过晚。过早,飞机离地大近,如果飞机有下俯,就可能重新接地,危及 安全;过晚,速度大大,起落架产生的阻力很大,不易增速,还可能造成起落架收下好。在一段平飞或小角度上升中,特别要防止出现坡度,因为这时飞行高度低,飞机如有坡度,就会向下侧滑而可能使飞机撞地。因此发现飞机有坡度应及时纠正。 (四)当速度增加到规定时,应柔和带杆使飞机转入稳定上升,上升到规定高度起飞阶段结束。 影响起飞滑跑距离的因素影响起飞滑跑距离的困素有油门位置、离地迎角、襟翼反置、起飞重量、机场标高与气温、跑道表面质量、风向风速、跑道坡度等。这些因素一般都是通过影响离地速度 或起飞滑跑的平均加速度来影响起飞滑跑距离的。 油门位置 油门越大,螺旋桨拉力或喷气推力越大,飞机增速快,起飞滑跑距离就短。所以,一般应用最大功率或最大油门状态起飞。 离地迎角 离地迎角的大小决定于抬前轮或抬机尾的高度。离地迎角大,离地速度小,起飞滑跑距离短。但离地迎角又不可过大,离地迎角过大,下仅会因飞机阻力大而使飞机增速慢延长滑跑距离,而且会直接危及飞行安全因此从既要保证飞行安全又要使滑跑距离短出发,各型飞机一般都规定有最有利的离地迎角值。 襟翼位置 放下襟翼,可增大升力系数,减小离地速度,因而能缩短起飞滑跑距离。 起飞重量 起飞重量增大,不仅使飞机离地速度增大,而且会引起机轮摩擦力增加,使飞机不易加速。因此,起飞重量增大,起飞滑跑距离增长。 机场标高与气温 机场标高或气温升高都会引起空气密度减小,一放面使拉力或推力减小,飞机加速慢;另一方面,离地速度增大,因此起飞滑跑距离必然增长。所以在炎热的高原机场起飞,滑跑距离显著增长。 跑道表面质量 不同跑道表面质量的摩擦系数,滑跑距离也就不同。跑道表面如果光滑平坦而坚实,则摩擦系数小,摩擦力小,飞机增速快,起飞滑跑距离短。反之跑道表面粗糙不平或松软,起飞滑跑距离就长。 风向风速 起飞滑跑时,为了产生足够的升力使飞机离地,不论有风或无风,离地空速是一定的。但滑跑距离只与地速有关,逆风滑跑时,离地地速小,所以起飞滑跑距离比无风时短。反之则长。 滑跑坡度 跑道有坡度,会使飞机加速力增大或减小。

文章TAG:飞机  怎么  驾驶  图片  飞机怎么驾驶图片大全  
下一篇