本文目录一览

1,爱心贺卡怎么做

材料:硬卡纸、粉红色纸、铅笔、剪刀、胶水 方法步骤: 首先我们取出粉红色纸,把它折成一个三角形 把三角形拆开折成一个小正方形,接着用铅笔在开口多的那边画出心形的凹凸处 接着我们用剪刀把多余的纸张剪去,打开 我们把它的两边向内折叠,这样我们的心形就做好;我们可以把做好的心形用胶水粘在卡纸正面 按照同样的做法,我们在制作出两个心形,把它粘在卡纸的折痕两边 把卡纸打开的时候心形还会弹出来哦。我们可以在心形上写一些甜言蜜语,也可以在空白的卡纸上画一些图案,按照自己的想法把我们的卡纸装饰的更加好看,甜蜜。你也赶紧制作一份爱的卡纸传递你的想念吧 注意事项: 粉红色是恋爱的颜色,礼物虽然很简单,但却可以表达出我们浓浓的思念

爱心贺卡怎么做

2,怎么折贺卡纸花

.  1.首先准备一个8厘米宽,16厘米长的纸条,然后在水平方向上进行对折。   2.接着将右上角向底部45°折叠。   3.然后再按照图中所示,将折叠后形成的三角的1/2右边部分折向左边。   4.接着将新形成的一个三角的1/2右边部分折向左边。   5.依照图中所示峰痕,将折痕左边部分沿着箭头所指方向向后折叠。   6.这个时候图示中出现2条谷痕,即将最右边的梯形向左边折叠两次,也就是翻滚着折叠两次。   7.按照图示7中所指示的折痕所在位置将折痕左边部分向后折叠。   8.接着再依照折痕所在位置将右边部分向左边翻滚折叠两次,然后做与第七部相同的操作。   9.将右边部分向左边翻滚两次。   10.然后将左边多余的部分向后折叠也依靠在玫瑰上面。   11.这样折纸玫瑰就制作完成了。

怎么折贺卡纸花

3,贺卡怎么制作

贺卡制作方法:找一张质地较硬适合做贺卡的长方形的纸,将纸沿长边对折,用铅笔画上图案,在两边加上两个横条,用剪刀将图案裁剪出来,横条与图案之间不要剪通,两端与纸相连,边缘用胶水粘好,给图案上色并写下祝福。贺卡是人们在遇到喜庆的日期或事件的时候互相表示问候的一种卡片,人们通常赠送贺卡的日子包括生日、圣诞、元旦、春节、母亲节、父亲节、情人节等日子。贺卡上一般有一些祝福的话语。制作步骤:1、传统的纸制贺卡可以从一些手工网站找素材,例如手工客等,根据样式选择适合的素材,动手制作贺卡。2、电子贺卡可以选用易企秀等H5制作平台,有免费的模板,文字、动画效果都可选择,需准备图片也可准备音乐。3、文字要自己写才真情实意,图片最好选与对方相关或与情境相关的图片;比如生日卡,可选择与对方的合影或对方的照片或者对方喜欢的音乐。贺卡的产生源于人类社交的需要。它是人与人之间的一种情感交往,而这种交往又往往以短句表达,一看亦言简意赅,久而久之,贺语就出现了程式化,讲究喜庆,互送吉语,传达人们对生活的期冀与对未来的憧憬。

贺卡怎么制作

4,用纸卡片能叠什么东西

我们在这里所要讨论的是由8个等边三角形组成的正八面体,每个顶点都有4个三角形相交于此(图1),且其他的顶点也是如此.将图2放大,制作一个正八面体.边长8cm的三角形做出的模型大小适中,而且用一张A4的纸或卡片纸刚好.如果你是使用卡片纸,记得要在每条线上刻出印痕,才能折出整齐的边.  我们可以从许多角度来观察正八面体,每一种角度都能使我们更了解它.从展开图建构模型,使我们的注意力集中在面的形状与在一个顶点相会之面的数目.但是当你做好模型后,正八面体的其他性质就显而易见了.想象一下将正八面体水平切成两半,切面通过A、B、C、D4个顶点,如图3,将正八面体切成两个相等而且以正方形为底的金字塔.如果将正八面体旋转,使得任何其他的顶点如A或B位于上方,则所得出的结果也会相同.事实上,如果正八面体上没有任何标记,要区分一个顶点与其他顶点的不同之处是不可能的;面的情况也是如此.  由于这种对称性,任何通过一对相对顶点的二分切割都会得到如图4所示的正方形切面.  这给了我们一种新的角度来观察正八面体,也提供了制作模型的不同方法.  用卡片纸剪出两个正方形代表切面ABCD与EBFD.在这两个正方形中割出细缝,如图5,并沿BOD将两纸片组合起来.  当这两张卡片纸互相垂直时,A、B、C、D、E与F6点也就是正八面体的顶点.  继续完成此模型.剪下第三个正方形代表切面AECF;将正方形沿对角线EF分成两半,再沿着OA与OC割出细缝,如图6;现在将这两片半个正方形附加上去,即完成此模型,再使用胶水或胶带纸固定.  另一种做模型的方法是使用3个正方形框,重点是强调正八面体的正方形切面(可使用旧的铁丝衣架,且铁丝漆成不同颜色).用线将各个顶角绑起来,这种模型强调八面体的边.  将线或松紧带穿入吸管,也可以做出这种强调八面体边的模型(图7).不过使用吸管时,通常是先做出一个三角形,然后在上面搭出其他三角形,直到模型完成.也可以分别用4根吸管做出3个分开的环,代表切面ABCD、AECF与BEDF,然后将之联接在一起.在最后联接在一起之前,这种模型都不具有内在的刚性.这种方法相当富于启发性.  由八面体中的一个顶点开始,例如A,可以找到一条路径,走过所有的边而不需重复经过任何边就返回起点,例如:  A→B→E→D→F→B→C→D→A→E→C→F→A  杜德尼(H.E.Dudney)曾以此为基础设计了一道谜题,他向读者提出挑战,要找出由一个顶点开始究竟有多少条此种路径.路径的数目大得惊人,请你也试着找找看.  既然有此种路径存在,就表示你能用12根吸管连接成的封闭环做出一个吸管八面体.请试一试.  如果把吸管八面体置于幕布之前,再用光照射,则会出现各种不同形状的投影,但最令人惊奇的是会出现六边形与其对角线(图8).这是怎么做到的?  只要在吸管模型的一面加上3根吸管,就可以轻易地做出一个四面体.如果在八面体的各个面间隔地做出此种四面体,结果就是一个较大的四面体.  另一种观察正八面体与正四面体之间关系的方法是将正四面体的角对称地截去,参见图9.  如果以正八面体为起点并在其8个面上都加一个四面体,结果将成为一个八角星或是两个互相穿插的正四面体,而两者中间的共同部分就是最初的那个正八面体,参见图10.  现在仔细观察八角星,你可以发现各角也是正方体的顶点,参见图11;同时,最初的正八面体的顶点也恰好位于正方体各面的中心,参见图12.  其实,正方体与正八面体之间关系之密切远不只如此.如果以正八面体为起点,将相邻面的中点画线连接,就可以形成正方体,参见图13.因此,我们称正方体与正八面体互为“对偶”(dual)型立体,而且它们具有相同的对称性.正方体的任何对称面也都是正八面体的对称面.同理,旋转对称轴也是一样.同时,无论是正方体还是正八面体,截角到最后的形状都是“方形八面体”(cuboctahedron),参见图14.  天然的晶体通常会形成各种形状,例如一般的氯化钠晶体为正方体,明矾晶体为正八面体,辉银矿石的晶体为方形八面体.只要我们了解球体能以各种方式堆叠在一起充填空间,就会觉得晶体形状各异其实并不足以为奇.下列图形显示较常见的几种排列方式及其与各种形状之间的关系,不过要真的了解两者的关系,最好是用小球做出模型.  在图15与图16中,球在每一层都排成正方形,而在新的一层上也是一样.这称为“正方体填充”(cubical packing),如图15.如果考虑6个球要触及某一特定的球,参见图16,则那6个球的中心就位于正八面体的顶点.如一层球排成正方形,而新的一层球均位于前一层球形成的凹洞之中,也能显现出正八面体的形状,参见图17.方形八面体可以看成是一层球排成六边形,而新的一层球则位于前一层球形成的各个凹洞中,参见图18.在这种情况下要注意的是在间隔的层之间,球并没有直接上下相连,但是对应着由中间一层的球所形成的凹洞.

文章TAG:卡片  三角  怎么  爱心  夹卡片的三角纸怎么折  
下一篇